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Fig. 1: Overview of the Human-Robot Copilot framework. The human teleoperator determines when to intervene in policy
execution and collect augmentation data for policy fine-tuning. The bottom right illustrates simulation experiments in
robosuite, and the bottom left shows real-world experiments: cube sorting in a highly randomized environment and tower

of Hanoi insertion requiring high-precision actions.

Abstract— Collecting human demonstrations via teleopera-
tion is a common approach for teaching robots task-specific
skills. However, when only a limited number of demonstrations
are available, policies are prone to entering out-of-distribution
(O0D) states due to compounding errors or environmental
stochasticity. Existing interactive imitation learning or human-
in-the-loop methods try to address this issue by following the
Human-Gated DAgger(HG-DAgger) paradigm, an approach
that augments demonstrations through selective human inter-
vention during policy execution. Nevertheless, these approaches
struggle to balance dexterity and generality: they either provide
fine-grained corrections but are limited to specific kinematic
structures, or achieve generality at the cost of precise control. To
overcome this limitation, we propose the Human-Robot Copilot
framework that can leverage a scaling factor for dexterous
teleoperation while maintaining compatibility with a wide range
of industrial and research manipulators. Experimental results
demonstrate that our framework achieves higher performance

with the same number of demonstration trajectories. Moreover,
since corrective interventions are required only intermittently,
the overall data collection process is more efficient and less
time-consuming.

I. INTRODUCTION

Collecting human demonstrations via teleoperation has
become a popular paradigm for enabling robots to acquire
task-specific skills [1]-[4]. Although such demonstrations
can effectively bootstrap imitation learning policies, their
deployment often reveals critical limitations. Due to com-
pounding errors during deployment and the stochasticity
of environments, the learned policy often falls into out-
of-distribution (OOD) states where the policy struggles to
generalize suitable actions. While collecting additional data
with careful randomization may increase the coverage of



states in the demonstrations, the approach still suffers from
low data efficiency in the absence of prior knowledge about
the OOD states.

Several recent efforts have attempted to address this
challenge through human-in-the-loop data augmentation, in
which the robot runs automatically most of the time while
human intervention is introduced when the policy fails in
order to provide corrective demonstrations. These corrective
behaviors are subsequently incorporated into the demonstra-
tion dataset, thereby directly guiding the robot on how to act
in OOD states.

Sirius [5], for example, leverages a space mouse for human
intervention and correction to enable mixed control between
a learned policy and human teleoperation during deployment,
while simultaneously collecting new data for online fine-
tuning. However, the corrective capabilities of the space
mouse are inherently constrained—it only allows uniform
translational or rotational adjustments, making it unsuitable
for more complex refinements. Robo-Copilot [6] instead
introduces a dual-robot setup in which a “follower” robot
copys joint positions of a teleoperated leader” robot for
human demonstrations while the leader mirrors the follower
robot during policy execution. This design benefits from
the shared workspace and kinematic equivalence of the two
robots, enabling intuitive data collection during deployment.
Yet, the requirement of identical or proportionally scaled
kinematics across robots fundamentally limits its applicabil-
ity and prevents broader generalization.

These approaches highlight the tension between dexterity
and generality in human-in-the-loop robot learning. Although
existing systems provide useful correction methods, they
struggle to support fine-grained control while remaining
broadly compatible with heterogeneous robot platforms at
the same time.

To address these limitations, we propose Human-Robot
Copilot, a cross embodiment framework designed to improve
the entire pipeline of human demonstration collection and
imitation learning. Our system ensures that the leader and
follower robots share overlapping workspaces, enabling in-
tuitive corrective teleoperation during deployment. At the
same time, heterogeneity in arm design allows us to in-
troduce scaling factors that facilitate fine-grained control,
while providing full 6-DoF end-effector pose commands that
are compatible with a wide range of industrial and research
manipulators.

We demonstrate that fine-tuning with human data col-
lected through this framework significantly improves policy
performance on contact-rich, high-precision, and logically
complex tasks. This highlights the potential of heterogeneous
teleoperation systems to bridge the gap between efficient
human data collection and robust robot learning in real-world
deployment scenarios.

II. RELATED WORK

A. From offline imitation learning to human-in-the-loop.

Traditional imitation learning paradigms [1], [4], [7]-
[10] typically follow a three-stage pipeline: collecting a

fixed set of human demonstrations, training a policy on
this dataset, and subsequently deploying the learned policy.
Once the demonstrations are provided, the human supervi-
sor is excluded from the control loop, leaving the policy
fully responsible for execution. In contrast, human-in-the-
loop imitation learning [5], [6], [11]-[14] maintains con-
tinuous human involvement during deployment, enabling
supervision, intervention, supplementary demonstrations, and
evaluation. This paradigm not only addresses data sparsity
by allowing humans to provide additional demonstrations on
failure cases [13], [14] but also enhances safety through real-
time teleoperation override [5]. Moreover, it improves data
efficiency by focusing human input on the most challenging
parts of the task where the current policy underperforms.
As the policy improves, the human workload can gradually
decrease. A key requirement for these systems is the ability
to seamlessly switch between autonomous policy control
and human teleoperation, which fundamentally depends on
aligning the workspaces of the human and robot. However,
existing teleoperation devices often fall short of this require-
ment. [5], [12], [15]

B. Teleoperation devices.

Current human-in-the-loop teleoperation interfaces largely
fall into two categories. The first category, exemplified by
Smartphone, SpaceMouse and VR controllers [5], [12], [16]-
[19], provides cross embodiment control. Here, the human
input is added as a displacement or velocity increment to the
current robot states. While these devices are general-purpose
and capable of both coarse and fine motions, the delta control
is unintuitive [20] and ill-suited for tasks requiring both
large-scale movements and fine-grained precision, since the
controller’s displacement is relative and lacks a fixed spatial
reference to the robot’s base, making it difficult for operators
to perceive absolute position or scale. Moreover, demonstra-
tions collected via these devices show higher variance and
jerk, making them harder for the policy to learn [20].

The second category, relies on joint-space mirroring using
paired, isomorphic robot arms [3], [6], [21]-[25]. These
devices enable intuitive one-to-one control by directly map-
ping joint angles, but their limitations are twofold: (1) the
teleoperation scale is fixed, making it difficult to perform
fine-tuning in precision-demanding subtasks, and (2) their
homomorphic design restricts transferability, as a leader arm
can only control a structurally identical follower. Adapting
to a new robot therefore requires redesigning and rebuilding
the leader hardware, significantly reducing flexibility.

C. Towards cross-embodiment copilots.

To overcome these limitations, we propose a cross embod-
iment copilot framework that integrates hardware, control,
and learning. By leveraging kinematic workspace alignment
rather than strict joint homomorphism, humans can perform
both large-scale and fine-grained control across diverse robot
morphologies. Moreover, the framework allows humans to
efficiently provide supplementary demonstrations and fine-
tuning data during deployment, directly targeting the failure
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Fig. 2: Bidirectional control and observation communication. Forward and inverse kinematics (FK/IK) are continuously
computed for both the leader and follower robots. Dashed lines denote control signals, of which only one is selected for
synchronization between the two robots. The human teleoperator determines which control signal the two robots executes.

modes of the current policy. This design achieves the intu-
itiveness of joint-space mirroring with the generality lacking
in existing approaches, while closing the loop between
control and learning to enable data-efficient human-in-the-
loop imitation learning.

III. METHOD

Our framework consists of two main components: an
interactive heterogeneous teleoperation system and a human-
in-the-loop imitation learning pipeline. We first introduce the
architecture and usage of the teleoperation system, which
enables interactive data collection across heterogeneous em-
bodiments at different control scales. This system is used
to collect both the initial demonstrations and the fine-tuning
data during deployment. We then describe how the collected
fine-tuning data are integrated into the imitation learning
process to continually improve the policy.

A. Teleoperation System for Human-in-the-loop

To realize a cross embodiment teleoperation system, a
common approach is to leverage the inverse-kinematic (IK)
solver to translate the desired end-effector pose derived from
the leader device into the joint positions of the follower arm.
Although these IK-based teleoperation devices have been
explored previously [18], [26], they are typically limited to
unidirectional control, where a leader arm solely drives a
follower arm. Such designs have primarily been applied in
traditional offline imitation learning settings.

However, for human-in-the-loop teleoperation, bidirec-
tional communication and control capabilities are needed
for synchronizing the two devices and seamlessly switching
between the two control modes. By augmenting the IK-
based device [26] with bidirectional control, we extend
its applicability to human-in-the-loop scenarios, where it
enables efficient collection of fine-tuning data during policy
deployment.

Our control logic operates in two modes. During the initial
data collection, the leader arm reads the motor encoders
and IMU signals. The joint readings are passed through
forward kinematics to obtain the end-effector position, which
is then combined with the IMU rotation to estimate the
full end-effector pose. This pose is provided to the IK
solver of the follower arm, and the resulting command joint
positions are sent to the follower arm for execution. In
parallel, the follower returns observed joint positions, which
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Fig. 3: Illustration of task workspaces under different scaling
factors. The black cube represents the workspace of the
leader arm, while the two blue cubes correspond to task
workspaces under different scaling factors. A larger task
workspace facilitates rapid large-scale movements, whereas a
smaller task workspace supports precise and accurate actions
for high-precision tasks.

are converted via forward kinematics into Cartesian end-
effector positions. During data collection, these states of the
follower are only treated as observations.

During human-in-the-loop fine-tuning, teleoperation and
policy execution run as two parallel channels, although only
one channel’s output is forwarded to the follower arm at
any given time. The operator can switch between teleop and
policy channels with a single command. Importantly, because
of the bidirectional control logic, even when the follower
listens to the policy channel, the leader arm continues to
receive the follower’s joint positions. These joint positions
are converted via forward kinematics into Cartesian end-
effector pose, and then solved again through IK to update the
joint positions of the leader arm, ensuring both arms remain
aligned in the same workspace. This makes switching control
intuitive for the human operator. Meanwhile, both channels
can be subscribed by the data collection program, which
records synchronized command joint positions, observed
joint positions, and images under a unified timestamp to
construct data clips. Furthermore, when running the policy,
switching into teleoperation mode allows us to compare
the policy outputs against human demonstrations, thereby
inspecting the abnormal output of the policy and identifying
potential out-of-distribution (OOD) states.



Regular Imitation Learning
Warm Up

Human in the loop
workflow

Policy Training Policy Fine-tuning

Human
Intervention

Human Demonstration Deploy Policy

Fig. 4: Training and data augmentation workflow. The base
policy is first initialized through regular imitation learning. It
is then deployed to identify potential failure modes. During
deployment, a human teleoperator intervenes when neces-
sary, providing corrective actions. These corrective demon-
strations are recorded and incorporated into the original
dataset, which is subsequently used to fine-tune the policy.

To stabilize control, both leader and follower arms are
equipped with gravity and friction compensation, allowing
them to be driven with low-gain PD controllers. In teleoper-
ation mode, the returned control commands use even lower
PD gains to suppress oscillations and improve compliance. In
policy mode, by contrast, friction compensation of the leader
arm is disabled and its PD gains are increased, ensuring
real-time synchronization between the two end-effectors. The
bidirectional communication pipeline is illustrated in Fig.2

B. Control Scale Adjustment

By leveraging the heterogeneous characteristics of the
system, the teleoperation can be flexibly adjusted, enabling
coarse control for large-scale movements and fine-grained
control for precision-demanding tasks. The illustration of the
task workspaces under different scaling factors are in Fig.3.

Since the orientation of the end-effector does not require
scaling, we consider only the positional components. Let
follower end-effector position be x; € R3, and the leader
end-effector position be x; € R3, the mapping between the
two positions is defined as

X = a(x; —¢) + ¢y, (D

where c¢; denotes the center of the leader robot’s workspace,
c; denotes the center of the task workspace, and « is the
scaling factor.

For large-scale tasks, such as object transfer, we employ a
larger scaling factor (ov = 2.0) for the alignment between the
two workspaces. Conversely, for precision-demanding tasks,
such as object insertion, a smaller scaling factor(acc = 0.5) is
adopted to enable more accurate teleoperation.

C. Human-in-the-loop Imitation Learning

After obtaining the base policy, we proceed to human-in-
the-loop data collection. The training and data augmentation
workflow is illustrated in Fig.4. During deployment, the
robot executes the learned policy, but the human operator

Algorithm 1 Human-in-the-loop Imitation Learning with
Clip-Based Batch Finetuning

Require: Base demos Dy, initial policy 7y, human expert
¥, trigger K, iterations [N

1: Base train: m; + BC(Dy)

2: fori =1to N do

3 C+0 > clip buffer

4 Deploy 7;

5: while task not done do

6 observe s

7 if human intervenes then

8 start clip C < )

9 while human in control do

10: execute a* < 7*(s); append (s,a*) to
C; step env; update s

11: end while

12: C+cu{C}

13: else

14 execute a < 7;(s); step env; update s

15: end if

16: if |C| > K then

17: D+ DoUJgee C

18: mi41 < Finetune(m;, D); C < (; Redeploy
Ti+1

19: end if

20: end while

21: end for

22: Output: final policy

can take over control via teleoperator at any time. When
intervening, the operator can also selectively record demon-
strations. Unlike full trajectories, we only log the segments
after human takeover, which we call data clips. These clips
may correspond to different parts of a task rather than
entire demonstrations, but they provide targeted supervision
precisely where the policy struggles.

Compared to traditional offline training pipelines such
as Action Chunking Transformer (ACT) [3], human-in-the-
loop imitation learning requires the policy to support fast
iterations. Therefore, we utilize the ACT policy while re-
ducing the network size to enable rapid finetuning after data
augmentation. Moreover, we choose ResNet-18 as our vision
backbone instead of other more powerful but larger choices,
such as Dino-V2, used by other ACT-based policies [18].

For fine-tuning, we combine the collected data clips with
the original demonstrations (to avoid catastrophic forgetting
of previously learned skills). We summarize the fine-tuning
procedure in Algorithm 1. With the smaller network, training
the base policy from scratch takes about 40 minutes while
finetuning takes less than 10 minites to converge, enabling us
to rapidly redeploy the updated policy. This fast retraining
cycle supports repeated rounds of human-in-the-loop data
collection and refinement, making the framework practical
for real-world iterative improvement.
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Fig. 5: The real-world experiments and their key challenges. Fig. A illustrates the tower of hanoi insertion task. In addition
to the narrow tolerance required for insertion, grasping the disk itself is challenging. From the top view (top-right), the
gripper must align precisely with the disk’s center; otherwise, the disk slips out. From the side view (bottom-right), the
gripper must also engage below the midpoint of the disk’s curved edge. Fig. B presents the cube sorting task, where cubes
of different colors must be placed into their corresponding containers. The six objects are randomly distributed within a
45 cm x 35 cm workspace, creating a highly randomized environment that significantly increases the difficulty of learning

correct actions.

IV. EXPERIMENTS

The experimental setups are illustrated in Fig. 1. We con-
ducted a series of experiments to demonstrate the capabilities
of the proposed framework to locate the states where the
policy outputs abnormal actions and then collect targeted
fine-grained demonstrations with different scaling factors.
This therefore shows the data efficiency of the framework.

All policies are initialized with the same set of human
demonstrations as a warmup. While more demonstrations
are then added to the dataset of the base policy to train
it again from scratch, we augment the dataset with our
proposed Human-Robot Copilot and ensure that the total
number of trajectories matches that of the base policy for
a fair comparison.

A. Tasks

1) Simulation: We conducted two simulation experiments
on the standard Robomimic benchmark [27] to validate the
effectiveness of our proposed framework in a controlled
reproducible environment. We choose PickPlace(Can) and
NutAssembly(Square) tasks from the benchmark.

For the can pick-and-place task, precise grasping is re-
quired. If the gripper fails to clamp the can at its center,
the cylindrical structure of the can leads to uneven force
distribution, causing the object to gradually slip during
transportation.

In the square nut assembly task, randomization of the nut’s
orientation and position increases the diversity of possible
states, thereby requiring a larger amount of demonstrations
to ensure sufficient coverage. Moreover, successful assembly
demands highly precise placement, further compounding the
difficulty of the task. In order to generate relatively easy
demonstrations for the policy to learn, we adopted a two-
stage procedure: first orienting the nut correctly, followed
by grasping. In detail, if the nut was already in the right
direction, a grasping action was directly executed. Otherwise,

the nut was rotated incrementally—by up to 90 degrees per
step—until it reached the correct orientation, after which the
grasping action was performed. With this method, the policy
does not need to learn to generate right grasp actions for all
orientations of the nut.

2) Real World: For real world experiments, we designed
a cube sorting task with a wide range of randomization to
increase the likelihood of encountering out-of-distribution
(OOD) states, as well as a tower of hanoi insertion task
to evaluate the framework’s capability in executing precise,
contact-rich actions. The experimental setup and key chal-
lenges are illustrated in Fig.5

For the cube sorting task, we randomly placed the three
cubes with different colors and three corresponding square
containers in a 45cm x 35cm area. The robot is required to
pick those cubes and then place them into the right container.
Since the six objects have a wide range of randomized
positions, there is a large amount of data needed to cover
all the possible states.

For the tower of hanoi insertion task, the blue disk to be
inserted is randomly placed on the table, while the tower
itself is positioned along a line with a randomization range
of 3 cm. Since the task is designed primarily for evaluating
the ability of performing precise actions, we did not choose
a wide range for randomization. The diameter of the tower’s
pole is 13.6 mm, whereas the diameter of the disk’s central
hole is 15.6 mm, resulting in a tolerance margin of only 2
mm for successful insertion. Under this condition, the 3 cm
randomization is sufficient to ensure that the learned policy
is genuinely reasoning about how to place the disk, rather
than merely replaying the placement trajectories observed in
the human demonstrations.

B. Experiment Results

The experiment results are reported in Table.I. To better
illustrate the advantages of the proposed Human—Robot



Task Num of Traj Base Policy Proposed
Stage 1  Stage 2 Total Stage 1  Stage 2 Total
(a) Simulation
. 20 (warmup) 60 85 50 - - -
Can Pick & Place 40 90 75 65 85 75 60
20 (warmup) 30 85 25 - - -
Nut Assembly 40 45 95 45 55 100 55
(b) Real World
) 30 (warmup) 73 27 20 - - -
Cube Sorting 40 83 e 33 70 90 60
. . 30 (warmup) 70 80 50 - - -
Tower of Hanoi Insertion 40 60 90 55 90 85 75

TABLE I: Comparison of baseline and our method across simulation and real-world tasks. The execution of each task is
divided to two stages in evaluation. We reported the success rate (%) for each stage of each task to better analyze the failure

conditions.
Task Added Traj Base Policy  Proposed
Can Pick-and-Place 20 501.7 189.8
Nut Assembly 20 713.7 313.3
Cube Sorting 10 493.7 284.5
Tower of Hanoi Insertion 10 279.6 174.6

TABLE II: Total time (seconds) required to collect augmen-
tation data to the dataset for each task.

Copilot framework, we divide each task into two stages. The
first stage ends when the manipulator successfully grasps
the target object (i.e. can, nut, cube, disk), while the second
stage ends upon completion of the full task. Notably, even
the manipulator fails in first stage, we intervene to reposition
it at the beginning of the second stage and still evaluate its
success rate of the second stage.

The results indicate that the proposed human-robot copilot
consistently outperforms the base policy across most tasks.
Furthermore, Table.Il demonstrates that the time required to
collect corrective data is substantially lower than that needed
to acquire full trajectories, highlighting the data efficiency of
our framework.

In the following two sections, we analyze the factors
contributing to the superior data efficiency of the proposed
framework. We attribute this efficiency to two key aspects:
the ability to accurately identify failure conditions, and
the capability to perform fine-grained, concise corrective
interventions.

C. Locating Failure Conditions

Through the simulation and real world experiments, we
were able to identify the failure conditions of the base policy
and collect targeted demonstrations. Notably, several of these
failure cases were unexpected, indicating that augmenting

the dataset with additional demonstrations without prior
knowledge of such conditions may be insufficient to improve
policy performance in these scenarios.

For the can pick-and-place task in simulation, the primary
challenge lies in accurately clamping the can at its center.
Failures observed during Stage 2 (placing the can in the
target location) are primarily a consequence of imprecise
grasps in Stage 1, which cause the can to slip from the
gripper during transfer.

For the cube sorting task in real world experiments, as
we illustrated in Fig.5, since there is a wide range of
randomization of both the cubes and the containers, it is
also obvious that the robot will struggle to grasp a cube or
put it in the container that is located in a seldom visited
place in human demonstrations. During deployment, the
policy’s difficulties effectively indicate the out-of-distribution
(OOD) states, allowing the collected augmentation data to be
targeted specifically at these challenging states rather than
covering the entire state distribution.

While the failure modes of the two above tasks are quite
easily to expect, the policy failed unexpectedly in the other
two tasks. Both of the other two tasks require the policy to
generate precise actions for assembly or insertion, however,
from Table.I we can see that it is not difficult for the policy
to successfully insert the nut or disk, but it is hard to pick
them.

For the nut assembly task, although the rotation procedure
simplifies the demonstrations and facilitates policy learning,
it can also introduce unintended shifts of the nut, potentially
leading to the OOD states for the policy. For the tower of
hanoi insertion task, the near-cylindrical geometry of the disk
requires the same precise actions as the can pick-and-place
task in the simulation. Moreover, the curved side edges of the
disk requires the gripper to grasp below its widest diameter,
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Fig. 6: Human demonstrations collected under different
scaling factors for tower of hanoi insertion. The intervention
begins when the gripper approaches the tower(top left), ends
when the insertion is completed(bottom right).

or the disk is prone to slipping during transfer.

D. Fine-grained Correction

When abnormal actions occur—such as attempting to
grasp an object without proper alignment, failing to initiate
the next action, or overshooting the intended target loca-
tion—we intervene to provide corrective demonstrations that
guide the policy.

For tasks requiring high precision, we observed that even
human teleoperators face considerable challenges. For in-
stance, in the Tower of Hanoi insertion task, the human
teleoperator achieved only about a 40% success rate. While
failed demonstrations can be discarded during the collection
of training data for the base policy, failure cases encountered
during base policy deployment cannot be reliably repro-
duced, hence the correction demonstration is expected to
succeed in a single attempt. This highlights the need to refine
the policy using more precise teleoperation, underscoring the
importance of adopting a smaller scaling factor.

We illustrate the trajectories collected under different
scaling factors in Fig.6. We intervene the follower when the
gripper approaches the tower ather than when misalignment
occurs to generate longer trajectories for better visualization.
The results show that demonstrations collected with a larger
scaling factor exhibit greater variance and often require
multiple attempts to align the column with the disk.

During data augmentation procedure, with a smaller scal-
ing factor (0.5 in our experiments), the corrective demonstra-
tions achieved a higher success rate and fewer attempts for
precise actions. This not only reduced the time cost of data
collection but also resulted in more concise datasets, which
in turn facilitated more effective policy learning.

V. CONCLUSION

In this paper, we proposed the Human-Robot Copilot
framework that is compatible with a wide range of ma-
nipulators and leverages a scaling factor to enable dex-
terous teleoperation in high-precision tasks. Experimental
results demonstrate that the human-in-the-loop data aug-
mentation effectively identifies failure conditions and out-
of-distribution (OOD) states, guiding the teleoperator to col-
lect targeted demonstrations. Meanwhile, the scaling factor

enhances the success rate of correction actions in precision-
demanding scenarios, enabling concise and easily imitable
actions. With these two advantages, the proposed frame-
work achieves data-efficient learning, requiring the same
number of demonstrations (and even less collection time) to
outperform the baseline policy trained with traditional data
collection methods.

Similar to how the quality of demonstrations affects pol-
icy performance in traditional data collection pipelines, the
limitation of the proposed framework lies in the strategy for
intervention and correction. Given the constraints of policy
fine-tuning and the inability of ACT to handle multimodal
demonstrations, correction actions should focus on refining
and enhancing the existing policy (e.g., executing more
precise grasps or placements) rather than introducing entirely
new modes of execution (e.g., attempting to pick up the nut in
all possible orientations). In the future, training an auxiliary
policy with the correction data, or adopting a base policy
capable of handling multimodality, may provide feasible
solutions to these challenges.
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